Tag Archives: Artificial Intelligence

What Are We Going to Do Now with GenAI?

What Are We Going to Do Now With GenAI?

GUEST POST from Geoffrey A. Moore

In 2023 we simply could not stop talking about Generative AI. But in 2024 the question for each enterprise became (continuing to today) — and this includes yours as well — is What are we going to do about it? Tough questions call for tough frameworks, so let’s run this one through the Hierarchy of Powers to see if it can shine some light on what might be your company’s best bet.

Category Power

Gen AI can have an impact anywhere in the Category Maturity Life Cycle, but the way it does so differs depending on where your category is, as follows:

  • Early Market. GenAI will almost certainly be a differentiating ingredient that is enabling a disruptive innovation, and you need to be on the bleeding edge. Think ChatGPT.
  • Crossing the chasm. Nailing your target use case is your sole priority, so you would use GenAI if, and only if, it helped you do so, and avoid getting distracted by its other bells and whistles. Think Khan Academy at the school district level.
  • Inside the tornado. Grabbing as much market share as you can is now the game to play, and GenAI-enabled features can help you do so provided they are fully integrated (no “some assembly required”). You cannot afford to slow your adoption down just at the time it needs to be at full speed. Think Microsoft CoPilot.
  • Growth Main Street (category still growing double digits). Market share boundaries are settling in, so the goal now is to grow your patch as fast as you can, solidifying your position and taking as much share as you can from the also-rans. Adding GenAI to the core product can provide a real boost as long as the disruption is minimal. Think Salesforce CRM.
  • Mature Main Street (category stabilized, single-digit growth). You are now marketing primarily to your installed base, secondarily seeking to pick up new logos as they come into play. GenAI can give you a midlife kicker provided you can use it to generate meaningful productivity gains. Think Adobe Photoshop.
  • Late Main Street (category declining, negative growth). The category has never been more profitable, so you are looking to extend its life in as low-cost a way as you can. GenAI can introduce innovative applications that otherwise would never occur to your end users. Think HP home printing.

Company Power

There are two dimensions of company power to consider when analyzing the ROI from a GenAI investment, as follows:

  • Market Share Status. Are you the market share leader, a challenger, or simply a participant? As a challenger, you can use GenAI to disrupt the market pecking order provided you differentiate in a way that is challenging for the leader to copy. On the other hand, as a leader, you can use GenAI to neutralize the innovations coming from challengers provided you can get it to market fast enough to keep the ecosystem in your camp. As a participant, you would add GenAI only if was your single point of differentiation (as a low-share participant, your R&D budget cannot fund more than one).
  • Default Operating Model. Is your core business better served by the complex systems operating model (typical for B2B companies with hundreds to thousands of large enterprises for customers) or the volume operations operating model (typical for B2C companies with hundreds of thousands to millions of consumers)? The complex systems model has sufficient margins to invest professional services across the entire ownership life cycle, from design consulting to installation to expansion. You are going to need deep in-house expertise to win big in this game. By contrast, GenAI deployed via the volume operations model has to work out-of-the-box. Consumers have neither the courage nor the patience to work through any disconnects.

Market Power

Whereas category share leaders benefit most from going broad, market segment leaders win big by going deep. The key tactic is to overdo it on the use cases that mean the most to your target customers, taking your offer beyond anything reasonable for a category leader to copy. GenAI can certainly be a part of this approach, as the two slides below illustrate:

Market Segmentation for Complex Systems

In the complex systems operating model, GenAI should accentuate the differentiation of your whole product, the complete solution to whatever problem you are targeting. That might mean, for example, taking your Large Language Model to a level of specificity that would normally not be warranted. This sets you apart from the incumbent vendor who has nothing like what you offer as well as from other technology vendors who have not embraced your target segment’s specific concerns. Think Crowdstrike’s Charlotte AI for cybersecurity analysis.

Market Segmentation for Volume Operations

In the volume operations operating model, GenAI should accentuate the differentiation of your brand promise by overdelivering on the relevant value discipline. Once again, it is critical not to get distracted by shiny objects—you want to differentiate in one quadrant only, although you can use GenAI in the other three for neutralization purposes. For Performance, think knowledge discovery. For Productivity, think writing letters. For Economy, think tutoring. For Convenience, think gift suggestions.

Offer Power

Everybody wants to “be innovative,” but it is worth stepping back a moment to ask, how do we get a Return on Innovation? Compared to its financial cousin, this kind of ROI is more of a leading indicator and thus of more strategic value. Basically, it comes in three forms:

  1. Differentiation. This creates customer preference, the goal being not just to be different but to create a clear separation from the competition, one that they cannot easily emulate. Think OpenAI.
  2. Neutralization. This closes the gap between you and a competitor who is taking market share away from you, the goal being to get to “good enough, fast enough,” thereby allowing your installed base to stay loyal. Think Google Bard.
  3. Optimization. This reduces the cost while maintaining performance, the goal being to expand the total available market. Think Edge GenAI on PCs and Macs.

For most of us, GenAI will be an added ingredient rather than a core product, which makes the ROI question even more important. The easiest way to waste innovation dollars is to spend them on differentiation that does not go far enough, neutralization that does not go fast enough, or optimization that does not go deep enough. So, the key lesson here is, pick one and only one as your ROI goal, and then go all in to get a positive return.

Execution Power

How best to incorporate GenAI into your existing enterprise depends on which zone of operations you are looking to enhance, as illustrated by the zone management framework below:

Zone Management Framework

If you are unsure exactly what to do, assign the effort to the Incubation Zone and put them on the clock to come up with a good answer as fast as possible. If you can incorporate it directly into your core business’s offerings at relatively low risk, by all means, do so as it is the current hot ticket, and assign it to the Performance Zone. If there is not a good fit, consider using it internally instead to improve your own productivity, assigning it to the Productivity Zone. Finally, although it is awfully early days for this, if you are convinced it is an absolutely essential ingredient in a big bet you feel compelled to make, then assign it to the Transformation Zone and go all in. Again, the overall point is manage your investment in GenAI out of one zone and only one zone, as the success metrics for each zone are incompatible with those of the other three.

One final point. Embracing anything as novel as GenAI has to feel risky. I submit, however, that in 2025 not building upon meaningful GenAI action taken in 2024 is even more so.

That’s what I think. What do you think?

Image Credit: Pexels

Subscribe to Human-Centered Change & Innovation WeeklySign up here to join 17,000+ leaders getting Human-Centered Change & Innovation Weekly delivered to their inbox every week.

Can AI Replace the CEO?

A Day in the Life of the Algorithmic Executive

LAST UPDATED: December 28, 2025 at 1:56 PM

Can AI Replace the CEO?

GUEST POST from Art Inteligencia

We are entering an era where the corporate antibody – that natural organizational resistance to disruptive change – is meeting its most formidable challenger yet: the AI CEO. For years, we have discussed the automation of the factory floor and the back office. But what happens when the “useful seeds of invention” are planted in the corner office?

The suggestion that an algorithm could lead a company often triggers an immediate emotional response. Critics argue that leadership requires soul, while proponents point to the staggering inefficiencies, biases, and ego-driven errors that plague human executives. As an advocate for Innovation = Change with Impact, I believe we must look beyond the novelty and analyze the strategic logic of algorithmic leadership.

“Leadership is not merely a collection of decisions; it is the orchestration of human energy toward a shared purpose. An AI can optimize the notes, but it cannot yet compose the symphony or inspire the orchestra to play with passion.”

Braden Kelley

The Efficiency Play: Data Without Drama

The argument for an AI CEO rests on the pursuit of Truly Actionable Data. Humans are limited by cognitive load, sleep requirements, and emotional variance. An AI executive, by contrast, operates in Future Present mode — constantly processing global market shifts, supply chain micro-fluctuations, and internal sentiment analysis in real-time. It doesn’t have a “bad day,” and it doesn’t make decisions based on who it had lunch with.

Case Study 1: NetDragon Websoft and the “Tang Yu” Experiment

The Experiment: A Virtual CEO in a Gaming Giant

In 2022, NetDragon Websoft, a major Chinese gaming and mobile app company, appointed an AI-powered humanoid robot named Tang Yu as the Rotating CEO of its subsidiary. This wasn’t just a marketing stunt; it was a structural integration into the management flow.

The Results

Tang Yu was tasked with streamlining workflows, improving the quality of work tasks, and enhancing the speed of execution. Over the following year, the company reported that Tang Yu helped the subsidiary outperform the broader Hong Kong stock market. By serving as a real-time data hub, the AI signature was required for document approvals and risk assessments. It proved that in data-rich environments where speed of iteration is the primary competitive advantage, an algorithmic leader can significantly reduce operational friction.

Case Study 2: Dictador’s “Mika” and Brand Stewardship

The Challenge: The Face of Innovation

Dictador, a luxury rum producer, took the concept a step further by appointing Mika, a sophisticated female humanoid robot, as their CEO. Unlike Tang Yu, who worked mostly within internal systems, Mika serves as a public-facing brand steward and high-level decision-maker for their DAO (Decentralized Autonomous Organization) projects.

The Insight

Mika’s role highlights a different facet of leadership: Strategic Pattern Recognition. Mika analyzes consumer behavior and market trends to select artists for bottle designs and lead complex blockchain-based initiatives. While Mika lacks human empathy, the company uses her to demonstrate unbiased precision. However, it also exposes the human-AI gap: while Mika can optimize a product launch, she cannot yet navigate the nuanced political and emotional complexities of a global pandemic or a social crisis with the same grace as a seasoned human leader.

Leading Companies and Startups to Watch

The space is rapidly maturing beyond experimental robot figures. Quantive (with StrategyAI) is building the “operating system” for the modern CEO, connecting KPIs to real-work execution. Microsoft is positioning its Copilot ecosystem to act as a “Chief of Staff” to every executive, effectively automating the data-gathering and synthesis parts of the role. Watch startups like Tessl and Vapi, which are focusing on “Agentic AI” — systems that don’t just recommend decisions but have the autonomy to execute them across disparate platforms.

The Verdict: The Hybrid Future

Will AI replace the CEO? My answer is: not the great ones. AI will certainly replace the transactional CEO — the executive whose primary function is to crunch numbers, approve budgets, and monitor performance. These tasks are ripe for automation because they represent 19th-century management techniques.

However, the transformational CEO — the one who builds culture, navigates ethical gray areas, and creates a sense of belonging — will find that AI is their greatest ally. We must move from fearing replacement to mastering Human-AI Teaming. The CEOs of 2030 will be those who use AI to handle the complexity of the business so they can focus on the humanity of the organization.

Frequently Asked Questions

Can an AI legally serve as a CEO?

Currently, most corporate law jurisdictions require a natural person to serve as a director or officer for liability and accountability reasons. AI “CEOs” like Tang Yu or Mika often operate under the legal umbrella of a human board or chairman who retains ultimate responsibility.

What are the biggest risks of an AI CEO?

The primary risks include Algorithmic Bias (reinforcing historical prejudices found in the data), Lack of Crisis Adaptability (AI struggles with “Black Swan” events that have no historical precedent), and the Loss of Employee Trust if leadership feels cold and disconnected.

How should current CEOs prepare for AI leadership?

Leaders must focus on “Up-skilling for Empathy.” They should delegate data-heavy reporting to AI systems and re-invest that time into Culture Architecture and Change Management. The goal is to become an expert at Orchestrating Intelligence — both human and synthetic.

Disclaimer: This article speculates on the potential future applications of cutting-edge scientific research. While based on current scientific understanding, the practical realization of these concepts may vary in timeline and feasibility and are subject to ongoing research and development.

Image credits: Google Gemini

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

AI Stands for Accidental Innovation

LAST UPDATED: December 29, 2025 at 12:49 PM

AI Stands for Accidental Innovation

GUEST POST from Art Inteligencia

In the world of corporate strategy, we love to manufacture myths of inevitable visionary genius. We look at the behemoths of today and assume their current dominance was etched in stone a decade ago by a leader who could see through the fog of time. But as someone who has spent a career studying Human-Centered Innovation and the mechanics of innovation, I can tell you that the reality is often much messier. And this is no different when it comes to artificial intelligence (AI), so much so that it could be said that AI stands for Accidental Innovation.

Take, for instance, the meteoric rise of Nvidia. Today, they are the undisputed architects of the intelligence age, a company whose hardware powers the Large Language Models (LLMs) reshaping our world. Yet, if we pull back the curtain, we find a story of survival, near-acquisitions, and a heavy dose of serendipity. Nvidia didn’t build their current empire because they predicted the exact nuances of the generative AI explosion; they built it because they were lucky enough to have developed technology for a completely different purpose that happened to be the perfect fuel for the AI fire.

“True innovation is rarely a straight line drawn by a visionary; it is more often a resilient platform that survives its original intent long enough to meet a future it didn’t expect.”

Braden Kelley

The Parallel Universe: The Meta/Oculus Near-Miss

It is difficult to imagine now, but there was a point in the Future Present where Nvidia was seen as a vulnerable hardware player. In the mid-2010s, as the Virtual Reality (VR) hype began to peak, Nvidia’s focus was heavily tethered to the gaming market. Internal histories and industry whispers suggest that the Oculus division of Meta (then Facebook) explored the idea of acquiring or deeply merging with Nvidia’s core graphics capabilities to secure their own hardware vertical.

At the time, Nvidia’s valuation was a fraction of what it is today. Had that acquisition occurred, the “Corporate Antibodies” of a social media giant would likely have stifled the very modularity that makes Nvidia great today. Instead of becoming the generic compute engine for the world, Nvidia might have been optimized—and narrowed—into a specialized silicon shop for VR headsets. It was a sliding doors moment for the entire tech industry. By not being acquired, Nvidia maintained the autonomy to follow the scent of demand wherever it led next.

Case Study 1: The Meta/Oculus Intersection

Before the “Magnificent Seven” era, Nvidia was struggling to find its next big act beyond PC gaming. When Meta acquired Oculus, there was a desperate need for low-latency, high-performance GPUs to make VR viable. The relationship between the two companies was so symbiotic that some analysts argued a vertical integration was the only logical step. Had Mark Zuckerberg moved more aggressively to bring Nvidia under the Meta umbrella, the GPU might have become a proprietary tool for the Metaverse. Because this deal failed to materialize, Nvidia remained an open ecosystem, allowing researchers at Google and OpenAI to eventually use that same hardware for a little thing called a Transformer model.

The Crypto Catalyst: A Fortuitous Detour

The second major “accident” in Nvidia’s journey was the Cryptocurrency boom. For years, Nvidia’s stock and production cycles were whipped around by the price of Ethereum. To the outside world, this looked like a distraction—a volatile market that Nvidia was chasing to satisfy shareholders. However, the crypto miners demanded exactly what AI would later require: massive, parallel processing power and specialized chips (ASICs and high-end GPUs) that could perform simple calculations millions of times per second.

Nvidia leaned into this demand, refining their CUDA platform and their manufacturing scale. They weren’t building for LLMs yet; they were building for miners. But in doing so, they solved the scalability problem of parallel computing. When the “AI Winter” ended and the industry realized that Deep Learning was the path forward, Nvidia didn’t have to invent a new chip. They just had to rebrand the one they had already perfected for the blockchain. Preparation met opportunity, but the opportunity wasn’t the one they had initially invited to the dance.

Case Study 2: From Hashes to Tokens

In 2021, Nvidia’s primary concern was “Lite Hash Rate” (LHR) cards to deter crypto miners so gamers could finally buy GPUs. This era of forced scaling forced Nvidia to master the art of data-center-grade reliability. When ChatGPT arrived, the transition was seamless. The “Accidental Innovation” here was that the mathematical operations required to verify a block on a chain are fundamentally similar to the vector mathematics required to predict the next word in a sentence. Nvidia had built the world’s best token-prediction machine while thinking they were building the world’s best ledger-validation machine.

Leading Companies and Startups to Watch

While Nvidia currently sits on the throne of Accidental Innovation, the next wave of change-makers is already emerging by attempting to turn that accident into a deliberate architecture. Cerebras Systems is building “wafer-scale” engines that dwarf traditional GPUs, aiming to eliminate the networking bottlenecks that Nvidia’s “accidental” legacy still carries. Groq (not to be confused with the AI model) is focusing on LPU (Language Processing Units) that prioritize the inference speed necessary for real-time human interaction. In the software layer, Modular is working to decouple the AI software stack from specific hardware, potentially neutralizing Nvidia’s CUDA moat. Finally, keep an eye on CoreWeave, which has pivoted from crypto mining to become a specialized “AI cloud,” proving that Nvidia’s accidental path is a blueprint others can follow by design.

The Human-Centered Conclusion

We must stop teaching innovation as a series of deliberate masterstrokes. When we do that, we discourage leaders from experimenting. If you believe you must see the entire future before you act, you will stay paralyzed. Nvidia’s success is a testament to Agile Resilience. They built a powerful, flexible tool, stayed independent during a crucial acquisition window, and were humble enough to let the market show them what their technology was actually good for.

As we move into this next phase of the Future Present, the lesson is clear: don’t just build for the world you see today. Build for the accidents of tomorrow. Because in the end, the most impactful innovations are rarely the ones we planned; they are the ones we were ready for.

Frequently Asked Questions

Why is Nvidia’s success considered “accidental”?

While Nvidia’s leadership was visionary in parallel computing, their current dominance in AI stems from the fact that hardware they optimized for gaming and cryptocurrency mining turned out to be the exact architecture needed for Large Language Models (LLMs), a use case that wasn’t the primary driver of their R&D for most of their history.

Did Meta almost buy Nvidia?

Historical industry analysis suggests that during the early growth of Oculus, there were significant internal discussions within Meta (Facebook) about vertically integrating hardware. While a formal acquisition of the entire Nvidia corporation was never finalized, the close proximity and the potential for such a deal represent a “what if” moment that would have fundamentally changed the AI landscape.

What is the “CUDA moat”?

CUDA is Nvidia’s proprietary software platform that allows developers to use GPUs for general-purpose processing. Because Nvidia spent years refining this for various industries (including crypto), it has become the industry standard. Most AI developers write code specifically for CUDA, making it very difficult for them to switch to competing chips from AMD or Intel.

Image credits: Google Gemini

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

Will our opinion still really be our own in an AI Future?

Will our opinion still really be our own in an AI Future?

GUEST POST from Pete Foley

Intuitively we all mostly believe our opinions are our own.  After all, they come from that mysterious thing we call consciousness that resides somewhere inside of us. 

But we also know that other peoples opinions are influenced by all sorts of external influences. So unless we as individuals are uniquely immune to influence, it begs at the question; ‘how much of what we think, and what we do, is really uniquely us?’  And perhaps even more importantly, as our understanding of behavioral modification techniques evolves, and the power of the tools at our disposal grows, how much mental autonomy will any of us truly have in the future?

AI Manipulation of Political Opinion: A recent study from the Oxford Internet Institute (OII) and the UK AI Security Institute (AISI) showed how conversational AI can meaningfully influence peoples political beliefs. https://www.ox.ac.uk/news/2025-12-11-study-reveals-how-conversational-ai-can-exert-influence-over-political-beliefs .  Leveraging AI in this way potentially opens the door to a step-change in behavioral and opinion manipulation inn general.  And that’s quite sobering on a couple of fronts.   Firstly, for many today their political beliefs are deeply tied to our value system and deep sense of self, so this manipulation is potentially profound.  Secondly, if AI can do this today, how much more will it be able to do in the future?

A long History of Manipulation: Of course, manipulation of opinion or behavior is not new.  We are all overwhelmed by political marketing during election season.  We accept that media has manipulated public opinion for decades, and that social media has amplified this over the last few decades. Similarly we’ve all grown up immersed in marketing and advertising designed to influence our decisions, opinions and actions.  Meanwhile the rise in prominence of the behavioral sciences in recent decades has provided more structure and efficiency to behavioral influence, literally turning an art into a science.  Framing, priming, pre-suasion, nudging and a host of other techniques can have a profound impact on what we believe and what we actually do. And not only do we accept it, but many, if not most of the people reading this will have used one or more of these channels or techniques.  

An Art and a Science: And behavioral manipulation is a highly diverse field, and can be deployed as an art or a science.   Whether it’s influencers, content creators, politicians, lawyers, marketers, advertisers, movie directors, magicians, artists, comedians, even physicians or financial advisors, our lives are full of people who influence us, often using implicit cues that operate below our awareness. 

And it’s the largely implicit nature of these processes that explains why we tend to intuitively think this is something that happens to other people. By definition we are largely unaware of implicit influence on ourselves, although we can often see it in others.   And even in hindsight, it’s very difficult to introspect implicit manipulation of our own actions and opinions, because there is often no obvious conscious causal event. 

So what does this mean?  As with a lot of discussion around how an AI future, or any future for that matter, will unfold, informed speculation is pretty much all we have.  Futurism is far from an exact science.  But there are a couple of things we can make pretty decent guesses around.

1.  The ability to manipulate how people think creates power and wealth.

2.  Some will use this for good, some not, but given the nature of humanity, it’s unlikely that it will be used exclusively for either.

3.  AI is going to amplify our ability to manipulate how people think.  

The Good news: Benevolent behavioral and opinion manipulation has the power to do enormous good.  Whether it’s mental health and happiness (an increasingly challenging area as we as a species face unprecedented technology driven disruption), health, wellness, job satisfaction, social engagement, important for many of us, adoption of beneficial technology and innovation and so many other areas can benefit from this.  And given the power of the brain, there is even potential for conceptual manipulation to replace significant numbers of pharmaceuticals, by, for example, managing depression, or via preventative behavioral health interventions.   Will this be authentic? It’s probably a little Huxley dystopian, but will we care?  It’s one of the many ethical connundrums AI will pose us with.

The Bad News.  Did I mention wealth and power?  As humans, we don’t have a great record of doing the right thing when wealth and power come into the equation.  And AI and AI empowered social, conceptual and behavioral manipulation has potential to concentrate meaningful power even more so than today’s tech driven society.  Will this be used exclusively for good, or will some seek to leverage for their personal benefit at the expense of the border community?   Answers on a postcard (or AI generated DM if you prefer).

What can and should we do?  Realistically, as individuals we can self police, but we obviously also face limits in self awareness of implicit manipulations.  That said, we can to some degree still audit ourselves.  We’ve probably all felt ourselves at some point being riled up by a well constructed meme designed to amplify our beliefs.   Sometimes we recognize this quickly, other times we may be a little slower. But just simple awareness of the potential to be manipulated, and the symptoms of manipulation, such as intense or disproportionate emotional responses, can help us mitigate and even correct some of the worst effects. 

Collectively, there are more opportunities.  We are better at seeing others being manipulated than ourselves.  We can use that as a mirror, and/or call it out to others when we see it.  And many of us will find ourselves somewhere in the deployment chain, especially as AI is still in it’s early stages.  For those of us that this applies to, we have the opportunity to collectively nudge this emerging technology in the right direction. I still recall a conversation with Dan Ariely when I first started exploring behavioral science, perhaps 15-20 years ago.  It’s so long ago I have to paraphrase, but the essence of the conversation was to never manipulate people to do something that was not in there best interest.  

There is a pretty obvious and compelling moral framework behind this. But there is also an element of enlightened self interest. As a marketer working for a consumer goods company at the time, even if I could have nudged somebody into buying something they really didn’t want, it might have offered initial success, but would likely come back to bite me in the long-term.  They certainly wouldn’t become repeat customers, and a mixture of buyers remorse, loss aversion and revenge could turn them into active opponents.  This potential for critical thinking in hindsight exists for virtually every situation where outcomes damage the individual.   

The bottom line is that even today, we already ave to continually ask ourselves if what we see is real, if our beliefs are truly our own, or have they been manipulated? Media and social media memes already play the manipulation game.   AI may already be better, and if not, it’s only a matter of time before it is. If you think we are politically polarized now, hang onto your hat!!!  But awareness is key.  We all need to stay aware, be conscious of manipulation in ourselves and others, and counter it when we see it occurring for the wrong reasons.

Image credits: Google Gemini

Subscribe to Human-Centered Change & Innovation WeeklySign up here to join 17,000+ leaders getting Human-Centered Change & Innovation Weekly delivered to their inbox every week.

Was Your AI Strategy Developed by the Underpants Gnomes?

Was Your AI Strategy Developed by the Underpants Gnomes?

GUEST POST from Robyn Bolton

“It just popped up one day. Who knows how long they worked on it or how many of millions were spent. They told us to think of it as ChatGPT but trained on everything our company has ever done so we can ask it anything and get an answer immediately.”

The words my client was using to describe her company’s new AI Chatbot made it sound like a miracle. Her tone said something else completely.

“It sounds helpful,”  I offered.  “Have you tried it?”

 “I’m not training my replacement! And I’m not going to train my R&D, Supply Chain, Customer Insights, or Finance colleagues’ replacements either. And I’m not alone. I don’t think anyone’s using it because the company just announced they’re tracking usage and, if we don’t use it daily, that will be reflected in our performance reviews.”

 All I could do was sigh. The Underpants Gnomes have struck again.

Who are the Underpants Gnomes?

The Underpants Gnomes are the stars of a 1998 South Park episode described by media critic Paul Cantor as, “the most fully developed defense of capitalism ever produced.”

Claiming to be business experts, the Underpants Gnomes sneak into South Park residents’ homes every night and steal their underpants. When confronted by the boy in their underground lair, the Gnomes explain their business plan:

  1. Collect underpants
  2. ?
  3. Profit

It was meant as satire.

Some took it as a an abbreviated MBA.

How to Spot the Underpants AI Gnomes

As the AI hype grows, fueling executive FOMO (Fear of Missing Out), the Underpants Gnomes, cleverly disguised as experts, entrepreneurs and consultants, saw their opportunity.

  1. Sell AI
  2. ?
  3. Profit

 While they’ve pivoted their business focus, they haven’t improved their operations so the Underpants AI Gnomes as still easy to spot:

  1. Investment without Intention: Is your company investing in AI because it’s “essential to future-proofing the business?”  That sounds good but if your company can’t explain the future it’s proofing itself against and how AI builds a moat or a life preserver in that future, it’s a sign that  the Gnomes are in the building.
  2. Switches, not Solutions: If your company thinks that AI adoption is as “easy as turning on Copilot” or “installing a custom GPT chatbot, the Gnomes are gaining traction. AI is a tool and you need to teach people how to use tools, build processes to support the change, and demonstrate the benefit.
  3. Activity without Achievement: When MIT published research indicating that 95% of corporate Gen AI pilots were failing, it was a sign of just how deeply the Gnomes have infiltrated companies. Experiments are essential at the start of any new venture but only useful if they generate replicable and scalable learning.

How to defend against the AI Gnomes

Odds are the gnomes are already in your company. But fear not, you can still turn “Phase 2:?” into something that actually leads to “Phase 3: Profit.”

  1. Start with the end in mind: Be specific about the outcome you are trying to achieve. The answer should be agnostic of AI and tied to business goals.
  2. Design with people at the center: Achieving your desired outcomes requires rethinking and redesigning existing processes. Strategic creativity like that requires combining people, processes, and technology to achieve and embed.
  3. Develop with discipline: Just because you can (run a pilot, sign up for a free trial), doesn’t mean you should. Small-scale experiments require the same degree of discipline as multi-million-dollar digital transformations. So, if you can’t articulate what you need to learn and how it contributes to the bigger goal, move on.

AI, in all its forms, is here to stay. But the same doesn’t have to be true for the AI Gnomes.

Have you spotted the Gnomes in your company?

Image credit: AI Underpants Gnomes (just kidding, Google Gemini made the image)

Subscribe to Human-Centered Change & Innovation WeeklySign up here to join 17,000+ leaders getting Human-Centered Change & Innovation Weekly delivered to their inbox every week.

Embodied Artificial Intelligence is the Next Frontier of Human-Centered Innovation

LAST UPDATED: December 8, 2025 at 4:56 PM

Embodied Artificial Intelligence is the Next Frontier of Human-Centered Innovation

GUEST POST from Art Inteligencia

For the last decade, Artificial Intelligence (AI) has lived primarily on our screens and in the cloud — a brain without a body. While large language models (LLMs) and predictive algorithms have revolutionized data analysis, they have done little to change the physical experience of work, commerce, and daily life. This is the innovation chasm we must now bridge.

The next great technological leap is Embodied Artificial Intelligence (EAI): the convergence of advanced robotics (the body) and complex, generalized AI (the brain). EAI systems are designed not just to process information, but to operate autonomously and intelligently within our physical world. This is a profound shift for Human-Centered Innovation, because EAI promises to eliminate the drudgery, danger, and limitations of physical labor, allowing humans to focus exclusively on tasks that require judgment, creativity, and empathy.

The strategic deployment of EAI requires a shift in mindset: organizations must view these agents not as mechanical replacements, but as co-creators that augment and elevate the human experience. The most successful businesses will be those that unlearn the idea of human vs. machine and embrace the model of Human-Embodied AI Symbiosis.

The EAI Opportunity: Three Human-Centered Shifts

EAI accelerates change by enabling three crucial shifts in how we organize work and society:

1. The Shift from Automation to Augmentation

Traditional automation replaces repetitive tasks. EAI offers intelligent augmentation. Because EAI agents learn and adapt in real-time within dynamic environments (like a factory floor or a hospital), they can handle unforeseen situations that script-based robots cannot. This means the human partner moves from supervising a simple process to managing the exceptions and optimizations of a sophisticated one. The human job becomes about maximizing the intelligence of the system, not the efficiency of the body.

2. The Shift from Efficiency to Dignity

Many essential human jobs are physically demanding, dangerous, or profoundly repetitive. EAI offers a path to remove humans from these undignified roles — the loading and unloading of heavy boxes, inspection of hazardous infrastructure, or the constant repetition of simple assembly tasks. This frees human capital for high-value interaction, fostering a new organizational focus on the dignity of work. Organizations committed to Human-Centered Innovation must prioritize the use of EAI to eliminate physical risk and strain.

3. The Shift from Digital Transformation to Physical Transformation

For decades, digital transformation has been the focus. EAI catalyzes the necessary physical transformation. It closes the loop between software and reality. An inventory algorithm that predicts demand can now direct a bipedal robot to immediately retrieve and prepare the required product from a highly chaotic warehouse shelf. This real-time, physical execution based on abstract computation is the true meaning of operational innovation.

Case Study 1: Transforming Infrastructure Inspection

Challenge: High Risk and Cost in Critical Infrastructure Maintenance

A global energy corporation (“PowerLine”) faced immense risk and cost in maintaining high-voltage power lines, oil pipelines, and sub-sea infrastructure. These tasks required sending human crews into dangerous, often remote, or confined spaces for time-consuming, repetitive visual inspections.

EAI Intervention: Autonomous Sensory Agents

PowerLine deployed a fleet of autonomous, multi-limbed EAI agents equipped with advanced sensing and thermal imaging capabilities. These robots were trained not just on pre-programmed routes, but on the accumulated, historical data of human inspectors, learning to spot subtle signs of material stress and structural failure — a skill previously reserved for highly experienced humans.

  • The EAI agents performed 95% of routine inspections, capturing data with superior consistency.
  • Human experts unlearned routine patrol tasks and focused exclusively on interpreting the EAI data flags and designing complex repair strategies.

The Outcome:

The use of EAI led to a 70% reduction in inspection time and, critically, a near-zero rate of human exposure to high-risk environments. This strategic pivot proved that EAI’s greatest value is not economic replacement, but human safety and strategic focus. The EAI provided a foundational layer of reliable, granular data, enabling human judgment to be applied only where it mattered most.

Case Study 2: Elderly Care and Companionship

Challenge: Overstretched Human Caregivers and Isolation

A national assisted living provider (“ElderCare”) struggled with caregiver burnout and increasing costs, while many residents suffered from emotional isolation due to limited staff availability. The challenge was profoundly human-centered: how to provide dignity and aid without limitless human resources.

EAI Intervention: The Adaptive Care Companion

ElderCare piloted the use of adaptive, humanoid EAI companions in low-acuity environments. These agents were programmed to handle simple, repetitive physical tasks (retrieving dropped items, fetching water, reminding patients about medication) and, critically, were trained on empathetic conversation models.

  • The EAI agents managed 60% of non-essential, fetch-and-carry tasks, freeing up human nurses for complex medical care and deep, personalized interaction.
  • The EAI’s conversation logs provided caregivers with Small Data insights into the emotional state and preferences of the residents, allowing the human staff to maximize the quality of their face-to-face time.

The Outcome:

The pilot resulted in a 30% reduction in nurse burnout and, most importantly, a measurable increase in resident satisfaction and self-reported emotional well-being. The EAI was deployed not to replace the human touch, but to protect and maximize its quality by taking on the physical burden of routine care. The innovation successfully focused human empathy where it had the greatest impact.

The EAI Ecosystem: Companies to Watch

The race to commercialize EAI is accelerating, driven by the realization that AI needs a body to unlock its full economic potential. Organizations should be keenly aware of the leaders in this ecosystem. Companies like Boston Dynamics, known for advanced mobility and dexterity, are pioneering the physical platforms. Startups such as Sanctuary AI and Figure AI are focused on creating general-purpose humanoid robots capable of performing diverse tasks in unstructured environments, integrating advanced large language and vision models into physical forms. Simultaneously, major players like Tesla with its Optimus project and research divisions within Google DeepMind are laying the foundational AI models necessary for EAI agents to learn and adapt autonomously. The most promising developments are happening at the intersection of sophisticated hardware (the actuators and sensors) and generalized, real-time control software (the brain).

Conclusion: A New Operating Model

Embodied AI is not just another technology trend; it is the catalyst for a radical change in the operating model of human civilization. Leaders must stop viewing EAI deployment as a simple capital expenditure and start treating it as a Human-Centered Innovation project. Your strategy should be defined by the question: How can EAI liberate my best people to do their best, most human work? Embrace the complexity, manage the change, and utilize the EAI revolution to drive unprecedented levels of dignity, safety, and innovation.

“The future of work is not AI replacing humans; it is EAI eliminating the tasks that prevent humans from being fully human.”

Frequently Asked Questions About Embodied Artificial Intelligence

1. How does Embodied AI differ from traditional industrial robotics?

Traditional industrial robots are fixed, single-purpose machines programmed to perform highly repetitive tasks in controlled environments. Embodied AI agents are mobile, often bipedal or multi-limbed, and are powered by generalized AI models, allowing them to learn, adapt, and perform complex, varied tasks in unstructured, human environments.

2. What is the Human-Centered opportunity of EAI?

The opportunity is the elimination of the “3 Ds” of labor: Dangerous, Dull, and Dirty. By transferring these physical burdens to EAI agents, organizations can reallocate human workers to roles requiring social intelligence, complex problem-solving, emotional judgment, and creative innovation, thereby increasing the dignity and strategic value of the human workforce.

3. What does “Human-Embodied AI Symbiosis” mean?

Symbiosis refers to the collaborative operating model where EAI agents manage the physical execution and data collection of routine, complex tasks, while human professionals provide oversight, set strategic goals, manage exceptions, and interpret the resulting data. The systems work together to achieve an outcome that neither could achieve efficiently alone.

Your first step toward embracing Embodied AI: Identify the single most physically demanding or dangerous task in your organization that is currently performed by a human. Begin a Human-Centered Design project to fully map the procedural and emotional friction points of that task, then use those insights to define the minimum viable product (MVP) requirements for an EAI agent that can eliminate that task entirely.

UPDATE – Here is an infographic of the key points of this article that you can download:

Embodied Artificial Intelligence Infographic

Disclaimer: This article speculates on the potential future applications of cutting-edge scientific research. While based on current scientific understanding, the practical realization of these concepts may vary in timeline and feasibility and are subject to ongoing research and development.

Image credit: 1 of 1,000+ quote slides for your meetings & presentations at http://misterinnovation.com

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.






Is OpenAI About to Go Bankrupt?

LAST UPDATED: December 4, 2025 at 4:48 PM

Is OpenAI About to Go Bankrupt?

GUEST POST from Chateau G Pato

The innovation landscape is shifting, and the tremors are strongest in the artificial intelligence (AI) sector. For a moment, OpenAI felt like an impenetrable fortress, the company that cracked the code and opened the floodgates of generative AI to the world. But now, as a thought leader focused on Human-Centered Innovation, I see the classic signs of disruption: a growing competitive field, a relentless cash burn, and a core product advantage that is rapidly eroding. The question of whether OpenAI is on the brink of bankruptcy isn’t just about sensational headlines — it’s about the fundamental sustainability of a business model built on unprecedented scale and staggering cost.

The “Code Red” announcement from OpenAI, ostensibly about maintaining product quality, was a subtle but profound concession. It was an acknowledgment that the days of unchallenged superiority are over. This came as competitors like Google’s Gemini and Anthropic’s Claude are not just keeping pace, but in many key performance metrics, they are reportedly surpassing OpenAI’s flagship models. Performance parity, or even outperformance, is a killer in the technology adoption curve. When the superior tool is also dramatically cheaper, the choice for enterprises and developers — the folks who pay the real money — becomes obvious.

The Inevitable Crunch: Performance and Price

The competitive pressure is coming from two key vectors: performance and cost-efficiency. While the public often focuses on benchmark scores like MMLU or coding abilities — where models like Gemini and Claude are now trading blows or pulling ahead — the real differentiator for business users is price. New models, including the China-based Deepseek, are entering the market with reported capabilities approaching the frontier models but at a fraction of the development and inference cost. Deepseek’s reportedly low development cost highlights that the efficiency of model creation is also improving outside of OpenAI’s immediate sphere.

Crucially, the open-source movement, championed by models like Meta’s Llama family, introduces a zero-cost baseline that fundamentally caps the premium OpenAI can charge. Llama, and the rapidly improving ecosystem around it, means that a good-enough, customizable, and completely free model is always an option for businesses. This open-source competition bypasses the high-cost API revenue model entirely, forcing closed-source providers to offer a quantum leap in utility to justify the expenditure. This dynamic accelerates the commoditization of foundational model technology, turning OpenAI’s once-unique selling proposition into a mere feature.

OpenAI’s models, for all their power, have been famously expensive to run — a cost that gets passed on through their API. The rise of sophisticated, cheaper alternatives — many of which employ highly efficient architectures like Mixture-of-Experts (MoE) — means the competitive edge of sheer scale is being neutralized by engineering breakthroughs in efficiency. If the next step in AI on its way to artificial general intelligence (AGI) is a choice between a 10% performance increase and a 10x cost reduction for 90% of the performance, the market will inevitably choose the latter. This is a structural pricing challenge that erodes one of OpenAI’s core revenue streams: API usage.

The Financial Chasm: Burn Rate vs. Reserves

The financial situation is where the “bankruptcy” narrative gains traction. Developing and running frontier AI models is perhaps the most capital-intensive venture in corporate history. Reports — which are often conflicting and subject to interpretation — paint a picture of a company with an astronomical cash burn rate. Estimates for annual operational and development expenses are in the billions of dollars, resulting in a net loss measured in the billions.

This reality must be contrasted with the position of their main rivals. While OpenAI is heavily reliant on Microsoft’s monumental investment — a complex deal involving cash and Azure cloud compute credits — Microsoft’s exposure is structured as a strategic infrastructure play. The real financial behemoth is Alphabet (Google), which can afford to aggressively subsidize its Gemini division almost indefinitely. Alphabet’s near-monopoly on global search engine advertising generates profits in the tens of billions of dollars every quarter. This virtually limitless reservoir of cash allows Google to cross-subsidize Gemini’s massive research, development, and inference costs, effectively enabling them to engage in a high-stakes price war that smaller, loss-making entities like OpenAI cannot truly win on a level playing field. Alphabet’s strategy is to capture market share first, using the profit engine of search to buy time and scale, a luxury OpenAI simply does not have without a continuous cash injection from a partner.

The question is not whether OpenAI has money now, but whether their revenue growth can finally eclipse their accelerating costs before their massive reserve is depleted. Their long-term financial projections, which foresee profitability and revenues in the hundreds of billions by the end of the decade, require not just growth, but a sustained, near-monopolistic capture of the new AI-driven knowledge economy. That becomes increasingly difficult when competitors are faster, cheaper, and arguably better, and have access to deeper, more sustainable profit engines for cross-subsidization.

The Future Outlook: Change or Consequence

OpenAI’s future is not doomed, but the company must initiate a rapid, human-centered transformation. The current trajectory — relying on unprecedented capital expenditure to maintain a shrinking lead in model performance — is structurally unsustainable in the face of faster, cheaper, and increasingly open-source models like Meta’s Llama. The next frontier isn’t just AGI; it’s AGI at scale, delivered efficiently and affordably.

OpenAI must pivot from a model of monolithic, expensive black-box development to one that prioritizes efficiency, modularity, and a true ecosystem approach. This means a rapid shift to MoE architectures, aggressive cost-cutting in inference, and a clear, compelling value proposition beyond just “we were first.” Human-Centered Innovation principles dictate that a company must listen to the market — and the market is shouting for price, performance, and flexibility. If OpenAI fails to execute this transformation and remains an expensive, marginal performer, its incredible cash reserves will serve only as a countdown timer to a necessary and painful restructuring.

Frequently Asked Questions (FAQ)

  • Is OpenAI currently profitable?
    OpenAI is currently operating at a significant net loss. Its annual cash burn rate, driven by high R&D and inference costs, reportedly exceeds its annual revenue, meaning it relies heavily on its massive cash reserves and the strategic investment from Microsoft to sustain operations.
  • How are Gemini and Claude competing against OpenAI on cost and performance?
    Competitors like Google’s Gemini and Anthropic’s Claude are achieving performance parity or superiority on key benchmarks. Furthermore, they are often cheaper to use (lower inference cost) due to more efficient architectures (like MoE) and the ability of their parent companies (Alphabet and Google) to cross-subsidize their AI divisions with enormous profits from other revenue streams, such as search engine advertising.
  • What was the purpose of OpenAI’s “Code Red” announcement?
    The “Code Red” was an internal or public acknowledgment by OpenAI that its models were facing performance and reliability degradation in the face of intense, high-quality competition from rivals. It signaled a necessary, urgent, company-wide focus on addressing these issues to restore and maintain a technological lead.

UPDATE: Just found on X that HSBC has said that OpenAI is going to have nearly a half trillion in operating losses until 2030, per Financial Times (FT). Here is the chart of their $100 Billion in projected losses in 2029. With the success of Gemini, Claude, Deep Seek, Llama and competitors yet to emerge, the revenue piece may be overstated:

OpenAI estimated 2029 financials

Image credits: Google Gemini, Financial Times

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.






Top 10 Human-Centered Change & Innovation Articles of November 2025

Top 10 Human-Centered Change & Innovation Articles of November 2025Drum roll please…

At the beginning of each month, we will profile the ten articles from the previous month that generated the most traffic to Human-Centered Change & Innovation. Did your favorite make the cut?

But enough delay, here are November’s ten most popular innovation posts:

  1. Eight Types of Innovation Executives — by Stefan Lindegaard
  2. Is There a Real Difference Between Leaders and Managers? — by David Burkus
  3. 1,000+ Free Innovation, Change and Design Quotes Slides — by Braden Kelley
  4. The AI Agent Paradox — by Art Inteligencia
  5. 74% of Companies Will Die in 10 Years Without Business Transformation — by Robyn Bolton
  6. The Unpredictability of Innovation is Predictable — by Mike Shipulski
  7. How to Make Your Employees Thirsty — by Braden Kelley
  8. Are We Suffering from AI Confirmation Bias? — by Geoffrey A. Moore
  9. How to Survive the Next Decade — by Robyn Bolton
  10. It’s the Customer Baby — by Braden Kelley

BONUS – Here are five more strong articles published in October that continue to resonate with people:

If you’re not familiar with Human-Centered Change & Innovation, we publish 4-7 new articles every week built around innovation and transformation insights from our roster of contributing authors and ad hoc submissions from community members. Get the articles right in your Facebook, Twitter or Linkedin feeds too!

Build a Common Language of Innovation on your team

Have something to contribute?

Human-Centered Change & Innovation is open to contributions from any and all innovation and transformation professionals out there (practitioners, professors, researchers, consultants, authors, etc.) who have valuable human-centered change and innovation insights to share with everyone for the greater good. If you’d like to contribute, please contact me.

P.S. Here are our Top 40 Innovation Bloggers lists from the last four years:

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.






The Reasons Customers May Refuse to Speak with AI

The Reasons Customers May Refuse to Speak with AI

GUEST POST from Shep Hyken

If you want to anger your customers, make them do something they don’t want to do.

Up to 66% of U.S. customers say that when it comes to getting help, resolving an issue or making a complaint, they only want to speak to a live person. That’s according to the 2025 State of Customer Service and Customer Experience (CX) annual study. If you don’t provide the option to speak to a live person, you are at risk of losing many customers.

But not all customers feel that way. We asked another sample of more than 1,000 customers about using AI and self-service tools to get customer support, and 34% said they stopped doing business with a company or brand because self-service options were not provided.

These findings reveal the contrasting needs and expectations customers have when communicating with the companies they do business with. While the majority prefer human-to-human interaction, a substantial number (about one-third) not only prefer self-service options — AI-fueled solutions, robust frequently asked question pages on a website, video tutorials and more — but demand it or they will actually leave to find a competitor that can provide what they want.

This creates a big challenge for CX decision-makers that directly impacts customer retention and revenue.

Why Some Customers Resist AI

Our research finds that age makes a difference. For example, Baby Boomers show the strongest preference for human interaction, with 82% preferring the phone over digital solutions. Only half (52%) of Gen-Z feels the same way about the phone. Here’s why:

  1. Lack of Trust: Trust is another concern, with almost half (49%) saying they are scared of technologies like AI and ChatGPT.
  2. Privacy Concerns: Seventy percent of customers are concerned about data privacy and security when interacting with AI.
  3. Success — Or Lack of Success: While I think it’s positive that 50% of customers surveyed have successfully resolved a customer service issue using AI without the need for a live agent, that also means that 50% have not.

Customers aren’t necessarily anti-technology. They’re anti-ineffective technology. When AI fails to understand requests and lacks empathy in sensitive situations, the negative experience can make certain customers want to only communicate with a human. Even half of Gen-Z (48%) says they are frustrated with AI technology (versus 17% of Baby Boomers).

Why Some Customers Embrace AI

The 34% of customers who prefer self-service options to the point of saying they are willing to stop doing business with a company if self-service isn’t available present a dilemma for CX leaders. This can paralyze the decision process for what solutions to buy and implement. Understanding some of the reasons certain customers embrace AI is important:

  1. Speed, Convenience and Efficiency: The ability to get immediate support without having to call a company, wait on hold, be authenticated, etc., is enough to get customers using AI. If you had the choice between getting an answer immediately or having to wait 15 minutes, which would you prefer? (That’s a rhetorical question.)
  2. 24/7 Availability: Immediate support is important, but having immediate access to support outside of normal business hours is even better.
  3. A Belief in the Future: There is optimism about the future of AI, as 63% of customers expect AI technologies to become the primary mode of customer service in the future — a significant increase from just 21% in 2021. That optimism has customers trying and outright adopting the use of AI.

CX leaders must recognize the generational differences — and any other impactful differences — as they make decisions. For companies that sell to customers across generations, this becomes increasingly important, especially as Gen-Z and Millennials gain purchasing power. Turning your back on a generation’s technology expectations puts you at risk of losing a large percentage of customers.

What’s a CX Leader To Do?

Some companies have experimented with forcing customers to use only AI and self-service solutions. This is risky, and for the most part, the experiments have failed. Yet, as AI improves — and it’s doing so at a very rapid pace — it’s okay to push customers to use self-service. Just support it with a seamless transfer to a human if needed. An AI-first approach works as long as there’s a backup.

Forcing customers to use a 100% solution, be it AI or human, puts your company at risk of losing customers. Today’s strategy should be a balanced choice between new and traditional customer support. It should be about giving customers the experience they want and expect — one that makes them say, “I’ll be back!”

Image credit: Pixabay

This article originally appeared on Forbes.com

Subscribe to Human-Centered Change & Innovation WeeklySign up here to join 17,000+ leaders getting Human-Centered Change & Innovation Weekly delivered to their inbox every week.






Don’t Adopt Artificial Incompetence

Don't Adopt Artificial Incompetence

GUEST POST from Shep Hyken

I’ve been reviewing my customer experience research, specifically the section on the future of customer service and AI (Artificial Intelligence). A few findings prove that customers are frustrated and lack confidence in how companies are using AI:

  • In general, 57% of customers are frustrated by AI-fueled self-service options.
  • 49% of customers say technologies like AI and ChatGPT scare them.
  • 51% of customers have received wrong or incorrect information from an AI self-service bot.

As negative as these findings sound, there are plenty of findings that point to AI getting better and more customers feeling comfortable using AI solutions. The technology continues to improve quickly. While it’s only been five months since we surveyed more than 1,000 U.S. consumers, I bet a new survey would show continued improvement and comfort level regarding AI. But for this short article, let’s focus on the problem that needs to be resolved.

Upon reviewing the numbers, I realized that there’s another kind of AI: Artificial Incompetence. That’s my new label for companies that improperly use AI and cause customers to be frustrated, scared and/or receive bad information. After thinking I was clever and invented this term, I was disheartened to discover, after a Google search, that the term already exists; however, it’s not widely used.

So, AI – as in Artificial Incompetence – is a problem you don’t want to have. To avoid it, start by recognizing that AI isn’t perfect. Be sure to have a human backup that’s fast and easy to reach when the customer feels frustrated, angry, or scared.

And now, as the title of this article implies, there’s more. After sharing the new concept of AI with my team, we brainstormed and had fun coming up with two more phrases based on some of the ideas I covered in my past articles and videos:

Feedback Constipation: When you get so much feedback and don’t take action, it’s like eating too much and not being able to “go.” (I know … a little graphic … but it makes the point.) This came from my article Turning Around Declining Customer Satisfaction, which teaches that collecting feedback isn’t valuable unless you use it.

Jargon Jeopardy: Most people – but not everyone – know what CX means. If you are using it with a customer, and they don’t know what it means, how do you think they feel? I was once talking to a customer service rep who kept using abbreviations. I could only guess what they meant. So I asked him to stop with the E-I-E-I-O’s (referencing the lyrics from the song about Old McDonald’s farm.) This was the main theme of my article titled Other Experiences Exist Beyond Customer Experience (EX, WX, DX, UX and more).

So, this was a fun way at poking fun of companies that may think they are doing CX right (and doing it well), but the customer’s perception is the opposite. Don’t use AI that frustrates customers and projects an image of incompetence. Don’t collect feedback unless you plan to use it. Otherwise, it’s a waste of everyone’s time and effort. Finally, don’t confuse customers – and even employees – with jargon and acronyms that make them feel like they are forced to relearn the alphabet.

Image Credits: 1 of 950+ FREE quote slides available at http://misterinnovation.com

This article originally appeared on Forbes.com

Subscribe to Human-Centered Change & Innovation WeeklySign up here to join 17,000+ leaders getting Human-Centered Change & Innovation Weekly delivered to their inbox every week.