Tag Archives: military

Innovation Lessons from Ukraine and China for the DoD

Ukraine Satellite Image from Capella Space

GUEST POST from Steve Blank

Portions of this post previously appeared in ‘War On the Rocks’

Looking at a satellite image of Ukraine online I realized it was from Capella Space – one of our Hacking for Defense student teams who now has seven satellites in orbit.

National Security is Now Dependent on Commercial Technology

They’re not the only startup in this fight. An entire wave of new startups and scaleups are providing satellite imagery and analysis, satellite communications, and unmanned aerial vehicles supporting the struggle.

For decades, satellites that took detailed pictures of Earth were only available to governments and the high-resolution images were classified. Today, commercial companies have their own satellites providing unclassified imagery. The government buys and distributes commercial images from startups to supplement their own and shares them with Ukraine as part of a broader intelligence-sharing arrangement that the head of Defense Intelligence Agency described as “revolutionary.” By the end of the decade, there will be 1000 commercial satellites for every U.S. government satellite in orbit.

At the onset of the war in Ukraine, Russia launched a cyber-attack on Viasat’s KA-SAT satellite, which supplies Internet across Europe, including to Ukraine. In response, to a (tweeted) request from Ukraine’s vice prime minister, Elon Musk’s Starlink satellite company shipped thousands of their satellite dishes and got Ukraine back on the Internet. Other startups are providing portable cell towers – “backpackable” and fixed. When these connect via satellite link, they can provide phone service and WIFI capability. Another startup is providing a resilient, mesh local area network for secure tactical communications supporting ground units.

Drone technology was initially only available to national governments and militaries but is now democratized to low price points and available as internet purchases. In Ukraine, drones from startups are being used as automated delivery vehicles for resupply, and for tactical reconnaissance to discover where threats are. When combined with commercial satellite imagery, this enables pinpoint accuracy to deliver maximum kinetic impact in stopping opposing forces.

Equipment from large military contractors and other countries is also part of the effort. However, the equipment listed above is available commercially off-the-shelf, at dramatically cheaper prices than what’s offered by the large existing defense contractors, and developed and delivered in a fraction of the time. The Ukraine conflict is demonstrating the changing character of war such that low-cost emerging commercial technology is extremely effective when deployed against a larger 20th-century industrialized force that Russia is fielding.

While we should celebrate the organizations that have created and fielded these systems, the battle for the Ukraine illustrates much larger issues in the Department of Defense.

For the first time ever our national security is inexorably intertwined with commercial technology (drones, AI, machine learning, autonomy, biotech, cyber, semiconductors, quantum, high-performance computing, commercial access to space, et al.) And as we’re seeing on the Ukrainian battlefield they are changing the balance of power.

The DoD’s traditional suppliers of defense tools, technologies, and weapons – the prime contractors and federal labs – are no longer the leaders in these next-generation technologies – drones, AI, machine learning, semiconductors, quantum, autonomy, biotech, cyber, quantum, high performance computing, et al. They know this and know that weapons that can be built at a fraction of the cost and upgraded via software will destroy their existing business models.

Venture capital and startups have spent 50 years institutionalizing the rapid delivery of disruptive innovation. In the U.S., private investors spent $300 billion last year to fund new ventures that can move with the speed and urgency that the DoD now requires. Meanwhile China has been engaged in a Civil/Military Fusion program since 2015 to harness these disruptive commercial technologies for its national security needs.

China – Civil/Military Fusion

Every year the Secretary of Defense has to issue a formal report to Congress: Military and Security Developments Involving the People’s Republic of China. Six pages of this year’s report describe how China is combining its military-civilian sectors as a national effort for the PRC to develop a “world-class” military and become a world leader in science and technology. A key part of Beijing’s strategy includes developing and acquiring advanced dual-use technology. It’s worth thinking about what this means – China is not just using its traditional military contractors to build its defense ecosystem; they’re mobilizing their entire economy – commercial plus military suppliers. And we’re not.

DoD’s Civil/Military Orphan-Child – the Defense Innovation Unit

In 2015, before China started its Civil/Military effort, then-Secretary of Defense Ash Carter, saw the need for the DoD to understand, embrace and acquire commercial technology. To do so he started the Defense Innovation Unit (DIU). With offices in Silicon Valley, Austin, Boston, Chicago and Washington, DC, this is the one DoD organization with the staffing and mandate to match commercial startups or scaleups to pressing national security problems. DIU bridges the divide between DOD requirements and the commercial technology needed to address them with speed and urgency. It accelerates the connection of commercial technology to the military. Just as importantly, DIU helps the Department of Defense learn how to innovate at the same speed as tech-driven companies.

Many of the startups providing Ukraine satellite imagery and analysis, satellite communications, and unmanned aerial vehicles were found by the Defense Innovation Unit (DIU). Given that DIU is the Department of Defense’s most successful organization in developing and acquiring advanced dual-use technology, one would expect the department to scale the Defense Innovation Unit by a factor of ten. (Two years ago, the House Armed Services Committee in its Future of Defense Task Force report recommended exactly that—a 10X increase in budget.) The threats are too imminent and stakes too high not to do so.

So what happened?

Congress cut their budget by 20%.

And their well-regarded director just resigned in frustration because the Department is not resourcing DIU nor moving fast enough or broadly enough in adopting commercial technology.

Why? The Defense Ecosystem is at a turning point. Defense innovation threatens entrenched interests. Given that the Pentagon budget is essentially fixed, creating new vendors and new national champions of the next generation of defense technologies becomes a zero-sum game.

The Defense Innovation Unit (DIU) had no advocates in its chain of command willing to go to bat for it, let alone scale it.

The Department of Defense has world-class people and organization for a world that no longer exists

The Pentagon’s relationship with startups and commercial companies, already an arms-length one, is hindered by a profound lack of understanding about how the commercial innovation ecosystem works and its failure of imagination about what venture and private equity funded innovation could offer. In the last few years new venture capital and private equity firms have raised money to invest in dual-use startups. New startups focused on national security have sprung up and they and their investors have been banging on the closed doors of the defense department.

If we want to keep pace with our adversaries, we need to stop acting like we can compete with one hand tied behind our back. We need a radical reinvention of our civil/military innovation relationship. This would use Department of Defense funding, private capital, dual-use startups, existing prime contractors and federal labs in a new configuration that could look like this:


Create a new defense ecosystem encompassing startups, and mid-sized companies at the bleeding edge, prime contractors as integrators of advanced technology, federally funded R&D centers refocused on areas not covered by commercial tech (nuclear and hypersonics). Make it permanent by creating an innovation doctrine/policy.

Reorganize DoD Research and Engineering to allocate its budget and resources equally between traditional sources of innovation and new commercial sources of innovation.

  • Scale new entrants to the defense industrial base in dual-use commercial tech – AI/ML, Quantum, Space, drones, autonomy, biotech, underwater vehicles, shipyards, etc. that are not the traditional vendors. Do this by picking winners. Don’t give out door prizes. Contracts should be >$100M so high-quality venture-funded companies will play.

Reorganize DoD Acquisition and Sustainment to create and buy from new 21st century arsenals – new shipyards, drone manufacturers, etc. that can make 1,000’s of extremely low cost, attritable systems – “the small, the agile and the many.”

  • Acquire at Speed. Today, the average Department of Defense major acquisition program takes anywhere from nine to 26 years to get a weapon in the hands of a warfighter. DoD needs a requirements, budgeting and acquisition process that operates at commercial speed (18 months or less) which is 10x faster than DoD procurement cycles. Instead of writing requirements, the department should rapidly assess solutions and engage warfighters in assessing and prototyping commercial solutions. We’ll know we’ve built the right ecosystem when a significant number of major defense acquisition programs are from new entrants.

  • Acquire with a commercially oriented process. Congress has already granted the Department of Defense “Other Transaction Authority” (OTA) as a way to streamline acquisitions so they do not need to use Federal Acquisition Regulations (FAR). DIU has created a “Commercial Solutions Opening” to mirror a commercial procurement process that leverages OTA. DoD could be applying Commercial Solutions Openings on a much faster and broader scale.

Integrate and create incentives for the Venture Capital/Private Equity ecosystem to invest at scale. The most important incentive would be for DoD to provide significant contracts for new entrants. (One new entrant which DIU introduced, Anduril, just received a follow-on contract for $1 billion. This should be one of many such contracts and not an isolated example.) More examples could include: matching dollars for national security investments (similar to the SBIR program but for investors), public/private partnership investment funds, or tax holidays and incentives – to get $10’s of billions of private investment dollars in technology areas of national interest.

Buy where we can; build where we must. Congress mandated that the Department of Defense should use commercial off-the-shelf technology wherever possible, but the department fails to do this (see industry letter to the Department of Defense).

Coordinate with Allies. Expand the National Security Innovation Base (NSIB) to an Allied Security Innovation Base. Source commercial technology from allies.

This is a politically impossible problem for the Defense Department to solve alone. Changes at this scale will require Congressional and executive office action. Hard to imagine in the polarized political environment. But not impossible.

Put Different People in Charge and reorganize around this new ecosystem. The threats, speed of change, and technologies the United States faces in this century require radically different mindsets and approaches than those it faced in the 20th century. Today’s leaders in the DoD, executive branch and Congress haven’t fully grasped the size, scale, and opportunity of the commercial innovation ecosystem or how to build innovation processes to move with the speed and urgency to match the pace China has set.


Change is hard – on the people and organizations inside the DoD who’ve spent years operating with one mindset to be asked to pivot to a new one.

But America’s adversaries have exploited the boundaries and borders between its defense and commercial and economic interests. Current approaches to innovation across the government — both in the past and under the current administration — are piecemeal, incremental, increasingly less relevant, and insufficient.

These are not problems of technology. It takes imagination, vision and the willingness to confront the status quo. So far, all are currently lacking.

Russia’s Black Sea flagship Moskva on the bottom of the ocean and the thousands of its destroyed tanks illustrate the consequences of a defense ecosystem living in the past. We need transformation not half-measures. The U.S. Department of Defense needs to change.

Historically, major defense reforms have come from inside the DoD, at other times Congress (National Security Act of 1947, Goldwater-Nichols Act of 1986) and others from the President (Roosevelt’s creation of the Joint Chiefs in 1942, Eisenhower and the Department of Defense Reorganization Act of 1958.)

It may be that the changes needed are so broad that the DoD can’t make them and Congress needs to act. If so, it’s their time to step up.

Carpe diem. Seize the day.

The full article originally appeared on Steve Blank’s blog

Image credit: Capella Space

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

Not Invented Here

Sometimes Letting Go is the Hardest Part of Innovation

Not Invented Here

GUEST POST from John Bessant

(You can find a podcast version of this story here)

The Welsh valleys are amongst the most beautiful in the world. Lush green hills steeply falling into gorges with silver water glistening below. It’s a place of almost perfect peace, the only movement the gentle trudge of sheep grazing safely, shuffling across the jagged landscape the way they’ve done for thousands of years. And amongst the most scenic and peaceful of these valleys are those situated between Dolgellau in the north, and Machynlleth in the south.

Except when there’s traffic in the ‘Mach loop’ — which is what the region is known as in military circles. It’s the place where young men and women from a variety of international air forces hone their skills at high-speed low-level flying, often as low as 75 meters from the ground. At any moment your peaceful walk may be rudely interrupted by the roar of afterburners, your view across the green hillsides suddenly broken by the nose of an F16 or Typhoon poking its way up from one of the gorges below.

Your reaction may be mixed; annoyance at the interruption or admiration for the flying skills of those pilots giving you a personal air display. But it’s certainly impossible to ignore. And it does raise an interesting question — despite the impressive skills being demonstrated, do we actually need pilots flying the planes? Is there an alternative technology which allows low level high precision flying but which can be carried out by an operator sitting far away in a remote location? After all we’ve become pretty good at controlling devices at a distance, can even land them on distant planets or steer a course through the furthest reaches of our universe.

UAVs — unmanned aerial vehicles — are undoubtedly changing the face of aviation. But are they also a disruptive innovation, particularly in the military world where the heroic tradition of those magnificent men (and women) in their flying machines is still so strong?

A brief history of drones

The idea of using unmanned flying vehicles isn’t new; back in 1839 Austrian soldiers attacked the city of Venice with unmanned balloons filled with explosives. During the early years following the Wright brothers successful flight researchers began looking at the possibilities of unmanned aircraft. The first prototype took off in 1916 in the form of the Ruston Proctor Aerial Target; as its name suggests it was a pilotless machine designed to help train British aircrew in dogfighting. Importantly it drew on early versions of radio control and was one the many brainchildren of Nikolai Tesla but its early performance was unremarkable and the British military chose to scrap the project, believing that unmanned aerial vehicles had limited military potential.

A year later, an American alternative was created: the Hewitt-Sperry Automatic Airplane and successful trials led to the development of a production version, the Kettering Bug in 1918. Although its performance was impressive it arrived too late to be used in the war and further development was shelved.

By the time of the Second World War the enabling technologies around control and navigation had improved enormously; whilst still crude the German V1 and V2 rockets and flying bombs provided a powerful demonstration of what could be achieved at scale. Emphasis was placed on remote delivery of explosives — using UAVs as flying bombs or aerial torpedoes — but the possibilities of using them in other applications such as reconnaissance were beginning to be explored.

The Vietnam war saw this aspect come to the fore; the difficulties of operating in remote jungle and mountain zones made reconnaissance flying hazardous and the risks to aircrew who were shot down led to extensive use of UAVs. The Ryan Firebee drone flew over 5000 surveillance missions, controlled by a ground operator using a remote camera. Its versatility meant that it could be used for surveillance, delivery of supplies and as a weapon; UAVs began to be viewed as an alternative to manned aircraft. But despite their success and promise it was not until the 1990s that they began to occupy an increasingly significant role.

Early Drone - Wikimedia Commons

The technology found more support in Israel and during the 1973 Yom Kippur war UAVs were used in a variety of ways, as part of an integrated approach alongside piloted aircraft. A great deal of learning in this context meant that for a while Israel became the key source of UAV technology with the US acquiring and deploying this knowledge to improve its own capabilities, leading to the new generation deployed in the Gulf War. UAVs emerged as a critical tool for gathering intelligence at the tactical level. These systems were employed for battlefield damage assessment, targeting, and surveillance missions, particularly in high-threat airspace.

Fast forward to today. There’s been an incredible acceleration in the key enabling technologies which has helped UAVs established themselves as serious contenders for many aerial roles. For example GPS has moved from its early days in 1981 where a unit weighed 50kg and cost over $100k to a current cost of less than $5 for a chip-based unit weighing less than a gram. The Internal Measurement Unit (IMU) which measures a drone’s velocity, orientation and accelerations has followed a similar trajectory; in the 1960s an IMU weighed several kilograms and cost several million dollars but today the chipset which puts these features on your phone costs around $1. Kodak’s 1976 digital camera could only manage a 0.1 megapixel image from a unit weighing 2kg and costing over $10,000. Today’s digital cameras are approximately a billion times better (1000x resolution, 1000x smaller and 100x cheaper). And (perhaps most important) the communications capabilities now offered by Wi-Fi and Bluetooth enable accurate and long-range communication and control.

With an improvement trajectory like this you might be forgiven for assuming that UAVs would have largely replaced manned flying in most applications. It’s a cheap technology, versatile and (in military terms) expendable — losing a drone doesn’t carry with it the tragic costs of losing a trained pilot. Yet the reality is that the Mach Loop continues to reverberate with the sound of fast jets and their pilots practicing high-speed low-level maneuvers.

Not invented here?

Continuing to rely on manned aircraft is also a costly option — when a British F-35 Lightning crashed after take-off from an aircraft carrier in 2021 it represented over £100m sinking beneath the waves. So why is the adoption of UAV technology still problematic within major established air forces? It almost looks like another case of ‘not invented here’ — that strange innovation phenomenon in which otherwise smart organizations reject or bury promising new ideas.

At first sight it fits into a pattern which has been around a long time. Take the case of continuous aim gunfire at sea. Sounds rather dry and technical but what it boils down to is that 19th century naval warfare was not a very accurate game. Trying to shoot at something a long way away whilst perched on a ship which is rocking and rolling unexpectedly isn’t easy; most ships firing at other ships missed their targets. A study commissioned by the US Bureau of Ordnance in the late 1890s found an accuracy rate of less than 3%; in one test in 1899 five ships of the British North Atlantic Squadron fired for five minutes each at an old hulk at a range of 1600 yards; after 25 minutes only 2 hits had been registered on the target.

Clearly there was scope for innovation and it took place in 1898 on the decks of a British navy frigate called HMS Scylla, under the command of Percy Scott. He’d noticed that one of his gun crews was managing a much better performance and began studying and exploring what they were doing with a view to developing it into a system. By the time he was in command, two years later, of a squadron in the South China Sea he had refined his methods and equipped his flagship, HMS Terrible with new equipment and trained his gun crews.

Image: Painting by Christoffer Wilhelm Eckersberg, public domain

The improvements were significant and importantly influenced a young US lieutenant on secondment to the squadron. William Sims learned about the new system and applied it on his own ship with remarkable results; convinced of the power of this innovation he decided it was his mission to carry the news to Washington and change naval practice. What followed is a fascinating story for what it reveals about NIH and the many ways in which it can be deployed.

In his fascinating account Elting Morison highlights three strategies used by the US military to defend against the new idea. The first was simply to bury the idea; Sims’ reports to the Bureau of Ordnance and the Bureau of Navigation were simply filed away and forgotten. The second was to try and rebut the information; the response from the Bureau of Ordnance was along the lines of claiming that US equipment was as good as the British so any differences in firing performance must be due to the men involved. More important was their argument that continuous-aim firing was impossible; when that failed they conducted experiments to try to show there was no significant benefit from the approach. By running them on dry land they were able to cast doubt on the relative advantage of the new approach.

And their third strategy was to try and sideline Sims, painting him as an eccentric troublemaker, stressing his youth and lack of experience, highlighting the fact that he’d spent too long with the British navy and in other ways undermining his credibility. Needless to say this only strengthened Sims’ resolve and he duly went over the heads of the senior staff and appealed to President Roosevelt himself. He finally ‘won’; he remained as unpopular as ever but the new approach was grudgingly adopted and quickly became the dominant design for future naval gunnery.

Image: UK HMSO Public Domain

On dry land and a decade later a similar outsider — Major J. C. Fuller — was working with the British Army. He’d seen the possibilities in using tanks as a fast mobile strike capability and his ideas were eventually borne out, briefly in the latter part of the First World War when they were used to good effect in Cambrai and Amiens. But despite being given responsibility for introducing the new technology he met with resistance (not helped by his abrasive nature); there were many who saw tanks as an unwelcome diversion. It didn’t help that the organizational location in the command structure was in the Cavalry Corps — the very group most threatened by the change to tanks. Their post-war strategy was to continue to rely on the equine model; ‘more hay, more horses’ rather than investment in tanks or learning about tank warfare. Elsewhere though his ideas found fertile soil and he was credited by Adolf Hitler himself as the architect of the idea of ‘blitzkrieg’ — the fast mobile warfare which helped overrun France and much of Europe within a few weeks at the start of World War 2.

Drones as disruptive innovation?

Of course it’s complicated but could the case of drone adoption be history repeating itself? One explanation for why NIH happens in this fashion can be found in what we’ve learned about disruptive innovation. When it was published twenty five years ago Clayton Christensen’s classic book exploring the phenomenon ‘The innovator’s dilemma’ had the intriguing subtitle ‘When new technologies cause great firms to fail’. His core argument was that the organizations which were affected by disruptive innovations were not stupid but rather selectively blind, a consequence of their very market success and the organizational arrangements which had grown up over a long period of time to support that success.

For him the challenge wasn’t the old one of balancing radical and incremental change with the losing firms being too cautious. Rather it was about trajectories; whether a new technology was sustaining — reinforcing the existing trajectory — or disrupting, offering a new trajectory. As we’ve come to realize the core issue is about business models; disruption occurs when someone frames the new trajectory as something which can create value under different conditions.

The search for such a new business model doesn’t take place in the mainstream as a direct challenge; instead it emerges in different markets which are unserved or underserved but where the new features offer potential value (often good enough performance at much lower cost). These fringe markets provide the laboratory in which learning and refinement of the new technology and development of the business model can take place.

The problem arises when the new business model built on a new trajectory begins to appeal to the old mainstream market. At this point it’s a challenge to existing incumbents to let go of their old business model and reconfigure a new one. Jumping the tracks to a new trajectory is risky anyway but when you carry the baggage of years, perhaps decades or even centuries of the old model it becomes very hard. That’s when NIH rears its head and it can snap and bite at the new idea with surprising defensive vigor.

There’s almost a cycle to it like that developed by Elizabeth Kubler-Ross to explain the grieving process. First there’s denial — ignore it and it will go away, it’s not relevant to us, it won’t work in our industry, it’s not our core business, etc. Then there’s a period of rationalization, accepting the new idea but dismissing it as not relevant to the core business, followed by experimentation designed not so much to learn as to demonstrate why and how the new model offers little advantage. Variations on this theme include locating the experiments in the very part of the organization which has the most to lose (think about giving tank development to the Cavalry Corps).

Only when the evidence becomes impossible to ignore (often as a clear shift in the market towards the new trajectory and a significant competitive threat) comes the moment of acceptance. But even then commitment is often slow and lukewarm and the opportunity to get on the bus may have been missed.

Meanwhile in another part of the galaxy…

It’s not easy for the innovators trying to introduce the change. They struggle to break into the mainstream because they have no presence in that market and they are up against established interests and networks. Their best strategy is to continue to work with their fringe markets who do see the value in their model and to hope that eventually a cross-over to the mainstream takes place. Which is what has happened in the world of drone technology.

Demanding users in fringe application markets have provided the laboratory for fast learning. Early markets were in aerial photography where the cost of hiring planes and pilots could be cut significantly but where challenges around stability and development of lightweight equipment forced rapid innovation. Or mapping and surveying where difficult and sometimes inaccessible territory could be explored remotely. Once drones were able to carry specialized lightweight tools they could be used for remote repair and maintenance on oil platforms and other difficult or dangerous locations. Their capabilities in transportation opened up new possibilities in logistics, especially in challenging areas like delivering humanitarian aid. Significantly the demands of these fringe markets drove innovation around stability, payload, propulsion and other technologies, reinforcing and widening the appeal.

Estimates suggest the 2021 drone services market is worth $9 billion with predictions of growth rates as high as 45% per year. Application sectors outside mainstream aviation include infrastructure, agriculture, transport, security, media and entertainment, insurance, telecommunication and mining.

Holding the horses?

These days UAVs can do a lot for low price. Just like low-cost flying, mini mill steelmaking, and earthmoving equipment they represent a technology which has already changed the game in many sectors. They qualify as a disruptive innovation but they also trigger some interesting NIH behavior amongst the established incumbents. ‘We’ve always done it this way’ is particularly powerful when ‘this way’ has been around a long time and is associated with a history of past success.

Elting Morison has another story which underlines this challenge. Once again it concerns gunnery, this time the firing performance of mobile artillery crews in the British army during World War 2. A time and motion study was carried out using photographs of the procedure; the researcher was increasingly puzzled by the fact that at a certain point just before the gun was fired two men would peel away and stand several meters distant. It wasn’t until he discussed his findings with a retired colonel from the First World War that the mystery was solved. He was able to explain that the move was perfectly clear — the men were holding the horses. Despite the fact that the 1942 artillery was transported by truck the procedures for horse-drawn guns still remained in place.

Something worth reflecting on when you are walking in those Welsh hills…

Image: Pixabay

Image credits: as captioned, Wikimedia Commons, Pixabay

If you’re interested in more innovation stories please check out my website here

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

We Have the U.S. Military to Thank for the Internet and Other Key Technology

Why We Thank the US Military for the Internet

GUEST POST from Howard Tiersky

From the computers that are used to develop your app to the AI that’s incorporated into your chatbot, many of the technologies that are foundational to our digital world were either massively moved forward or funded by the military. Let’s go over some of those technologies.

Microchips

The microchips that we know today are composed of millions of transistors which were first developed by Bell Labs in 1949. Through military funding, microchips were further improved and incorporated in airplanes and missiles for complex communication and guidance systems.

Today, microchips are one of the basic building blocks of modern electronics, from calculators and cameras to hearing aids, pacemakers, and spacecraft guidance systems, they’re found almost everywhere electronics exist.

Computers

Did you know that the very first computer was funded by the US Military? The ENIAC, built between 1943 and 1945, was the first large-scale computer to run at electronic speed without being slowed by any mechanical parts. It enabled the military to calculate complex wartime ballistic tables, decryption, etc.

Apart from our phones and laptops, computers can be found in our cars, washing machines, manufacturing companies, 3D printers, power plants, banks, and more.

Cellular Technology

The original versions of cellular phone technology were heavily backed by the military for point-to-point soldier communication on the battlefield since they were more beneficial and secure than conventional radio technology.

Today, 80% of the US population owns a smartphone, and our ability to text, call, and video chat with others is a direct result of improved cellular technology.

The Internet

What we know as the internet today started out as the ARPANET. Backed by the US Military, it was initially used for military and academic communication for joint development projects and as a means of communication in the event of a nuclear attack.

As of 2020, 4.66 billion people around the world are internet users. This interconnectivity gave rise to our digital world and serves as the backbone behind almost all digital transformation initiatives today.

GPS

Originally developed for the military to help them navigate terrain and develop weapon targeting systems, the first 20 satellites launched for GPS were funded and driven by the military.

Without GPS technology, we wouldn’t have Google Maps, Waze, or Uber. Depending on your business, there are many ways you can incorporate GPS technology to streamline processes and collect data.

Digital Cameras

The digital sensors used by cameras were developed by the military because of their need to capture and send images wirelessly from satellites in space for terrain mapping and espionage operations.

DSLRs, mirrorless cameras, product advertisements, and face recognition technology all came as a direct result of these digital sensors.

Drones

While there are a lot of non-military applications for drones today, the development of drones was initially funded by the US military to avoid any risk to pilots, fly undetected, and provide real-time footage of an area.

A common use for drones is to help farmers scatter seeds, deliver goods to customers, and collect photos or videos of different places, but there are plenty of other ways we can incorporate them into media, architecture, construction, and emergency response.

Artificial Intelligence

The defense sector is projected to spend about $2 billion in Artificial Intelligence this year. The ability to play out simulations, analyze and understand satellite communications, and improve disaster preparedness are just a few of the many ways AI can be utilized by the military.

Commercially, we see AI in digital assistants like Siri, Bixby, and Google Assistant; chatbots on websites and messaging apps; disease mapping; automated financial investing; virtual booking; and social media monitoring.

So the next time you use your smartphone, Alexa, computer, or GPS, remember to say thank you to a soldier!

In my Wall Street Journal bestselling book, Winning Digital Customers: The Antidote to Irrelevance, I walk you through a simple five-step process to successful digital transformation. This methodology is proven and has worked for many companies that I’ve helped in the past. You can access the first chapter for free here or purchase the hard copy here.

Image credit: Wikimedia Commons

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

Challenging Orthodoxies – Flying High

Challenging Orthodoxies - Flying High

With a new Top Gun movie coming out soon, I thought this might be an appropriate share.

It used to be in the early days of military aviation that a pilot’s head only served as some level of protection during a crash or a battle. Then with the introduction of radio communications an additional function was added to allow the pilot to communicate with the ground and then eventually with other pilots. The arrival of jet airplanes necessitated the integration of breathing capabilities via a facemask attached to the helmet.

Things remained relatively unchanged for many years until miniaturization and advancing computer science and display technologies made it possible to introduce heads up displays for pilots, first into the cockpit and then into the visor of the pilot, allowing pilots to see key flight data in their field of vision without having to find the relevant instrument on their instrumentation panel.

But pilots still had to look out all of their different windows and event turn the airplane in order to see what was going on around the aircraft.

The latest helmet for pilots of the F35 changes all of that now however. Designers have challenged this orthodoxy that a pilot has to look out the window or turn the airplane to see what is going on outside the airplane AND the orthodoxy that a pilot must put on night vision goggles to see what is going on at night by creating a helmet that uses sensors on the outside of the airplane and feed the visual data to the pilot in their new $400,000 helmet for the F35 that allows them to see in every direction just by looking around, day or night. The pilot can now effectively see right through the walls and floor of the airplane with this helmet.

This helmet challenges orthodoxies, but it also leverages two other lenses from Rowan Gibson’s Four Lenses of Innovation to achieve the solution – harnessing trends (sensors, etc.), and understanding needs.

Despite Lockheed Martin holding the primary contract for the F35 Lightning, the helmet will be manufactured primarily in Israel by Elbit Systems with some final assembly work done by Rockwell Collins in the United States.


Accelerate your change and transformation success

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.