Tag Archives: biotechnology

The Breakthrough Lifecycle

The Breakthrough Lifecycle

GUEST POST from Greg Satell

Many experts suspect that the COVID crisis is receding into the background. It is, of course, hard to know for sure. There will continue to be debate and we will still need to have some mitigating measures in place. Still, for the most part, people are back at work, kids are in school, and relatively normal routines have returned.

Generations from now, historians will most likely still question what lessons are to be gleaned from the past few years. Should we strengthen our multilateral institutions or have they become so sclerotic that they need to be dismantled? Is the rise of populist nationalism a harbinger for the future or a flash in the pan?

One thing I don’t expect to be hotly debated, in fact seems perfectly clear even now, is that science saved us. Untold thousands, working mostly anonymously in labs around the world, created a vaccine of astonishing efficacy in record time. It is these types of breakthroughs that change the course of history and, if we can embrace their power, lead us to a better future.

A Seemingly Useless Idea

The MRNA technology that led to the Moderna and Pfizer-BioNTech vaccines have the potential to revolutionize medical science. It can rapidly reprogram the machinery in our cells to manufacture things that can potentially cure or prevent a wide range of diseases, from cancer to malaria, vastly more efficiently than anything we’ve ever seen before.

Yet while revolutionary, it is not at all a new idea. In fact Katalin Karikó, who pioneered the approach, published her first paper on mRNA-based therapy way back in 1990. Unfortunately, she wasn’t able to win grants to fund her work and, by 1995, things came to a head. She was told that she could either direct her energies in a different way, or be demoted.

This type of thing is not unusual. Jim Allison, who won the Nobel Prize for his work on cancer immunotherapy, had a very similar experience when he had his breakthrough, despite having already become a prominent leader in the field. “It was depressing,” he told me. “I knew this discovery could make a difference, but nobody wanted to invest in it.”

The truth is that the next big thing always starts out looking like nothing at all. Things that really change the world always arrive out of context for the simple reason that the world hasn’t changed yet.

Overcoming Resistance

Humans tend to see things in a linear fashion. It is easier for us to imagine a clear line of cause and effect, like a row of dominoes falling into each other, rather than a series of complex interactions and feedback loops. So it shouldn’t be surprising that, in hindsight, breakthrough ideas seem so obvious that only the most dim-witted would deny their utility.

When we think of something like, say, electricity, we often just assume that it was immediately adopted and the world simply changed overnight. After all, who could deny the superiority of an efficient electric motor over a big, noisy steam engine? Yet as the economist Paul David explained in a famous paper, it took 40 years for it to really take hold.

There are a few reasons why this is the case. The first is switching costs. A new technology almost always has to replace something that already does the job. Another problem involves establishing a learning curve. People need to figure out how to unlock the potential of the new technology. To bring about any significant change you first have to overcome resistance.

With electricity, the transition happened slowly. It wouldn’t have made sense to immediately tear down steam-powered factories and replace them. At first, only new plants used the electricity. Yet it wasn’t so much the technology itself, but how people learned to use it to re-imagine how factories functioned that unlocked a revolution in productivity gains.

In the case of mRNA technology, no one had seen a mRNA vaccine work, so many favored more traditional methods. Johnson & Johnson and AstraZeneca, for example, used a more traditional DNA-based approach using adenoviruses that was much better understood, rather than take a chance on a newer, unproven approach.

We seem to be at a similar point now with mRNA and other technologies, such as CRISPR. They’ve been proven to be viable, but we really don’t understand them well enough yet to unlock their full potential.

Building Out The Ecosystem

When we look back through history, we see a series of inventions. It seems obvious to us that things like the internal combustion engine and electricity would change the world. Still, as late as 1920, roughly 40 years after they were invented, most American’s lives remained unchanged. For practical purposes, the impact of those two breakthroughs were negligible.

What made the difference wasn’t so much the inventions themselves, but the ecosystems that form around them. For internal combustion engines it took a separate networks to supply oil, to build roads, manufacture cars and ships and so on. For electricity, entire industries based on secondary inventions, such as household appliances and radios, needed to form to fully realize the potential of the underlying technology.

Much of what came after could scarcely have been dreamed of. Who could have seen how transportation would transform retail? Or how communications technologies would revolutionize warfare? Do you really think anybody looked at an IBM mainframe in the 1960s and said, “Gee, this will be a real problem for newspapers some day?”

We can expect something similar to happen with mRNA technology. Once penicillin hit the market in 1946, a “golden age” of antibiotics ensued, resulting in revolutionary new drugs being introduced every year between 1950 and 1970. We’ve seen a similar bonanza in cancer immunotherapies since Jim Allison’s breakthrough.

In marked contrast to Katalin Karikó’s earlier difficulty in winning grants for her work, the floodgates have now opened as pharma companies are now racing to develop mRNA approaches for a myriad of diseases and maladies.

The Paradox Of New Paradigms

The global activist Srdja Popović once told me that when a revolution is successful, it’s difficult to explain the previous order, because it comes to be seen as unbelievable. Just as it’s hard to imagine a world without electricity, internal combustion or antibiotics today, it will be difficult to explain our lives today to future generations.

In much the same way, we cannot understand the future through linear extrapolation. We can, of course, look at today’s breakthroughs in things like artificial intelligence, synthetic biology and quantum computing, but what we don’t see is the second or third order effects, how they will shape societies and how societies will choose to shape them.

Looking at Edison’s lightbulb would tell you nothing about radios, rock music and the counterculture of the 60s, much like taking a ride in Ford’s “Model T” would offer little insight into the suburbs and shopping malls his machine would make possible. Ecosystems are, by definition, chaotic and non-linear.

What is important is that we allow for the unexpected. It was not obvious to anyone that Katalin Karikó could ever get her idea to work, but she shouldn’t have had to risk her career to make a go of it. We’re enormously lucky that she didn’t, as so many others would have, taken an easier path. It is, in the final analysis, that one brave decision that we have to thank for what promises to be brighter days ahead.

All who wander are not lost.

— Article courtesy of the Digital Tonto blog
— Image credits: Pixabay

Subscribe to Human-Centered Change & Innovation WeeklySign up here to join 17,000+ leaders getting Human-Centered Change & Innovation Weekly delivered to their inbox every week.

Biotechnology Breakthroughs That Enhance Human Health and Longevity

Biotechnology Breakthroughs That Enhance Human Health and Longevity

GUEST POST from Chateau G Pato

In the ever-evolving landscape of human health, biotechnology stands as a beacon of hope and innovation. The convergence of biology and technology has paved the way for groundbreaking advancements that not only enhance human health but also extend longevity. This article delves into some of the most significant biotechnology breakthroughs, highlighting their impact through two compelling case studies.

The Promise of Biotechnology

Biotechnology harnesses cellular and biomolecular processes to develop technologies and products that help improve our lives and the health of our planet. From gene editing to regenerative medicine, the potential applications are vast and transformative. Here are some key areas where biotechnology is making a significant impact:

  • Gene Therapy
  • Regenerative Medicine
  • Personalized Medicine
  • CRISPR and Gene Editing
  • Biopharmaceuticals

Case Study 1: CRISPR-Cas9 and Sickle Cell Disease

Background

Sickle cell disease (SCD) is a genetic disorder that affects millions of people worldwide. It is caused by a mutation in the HBB gene, leading to the production of abnormal hemoglobin. This results in misshapen red blood cells that can cause severe pain, organ damage, and reduced life expectancy.

The Breakthrough

CRISPR-Cas9, a revolutionary gene-editing technology, has shown immense promise in treating SCD. By precisely targeting and correcting the genetic mutation responsible for the disease, CRISPR-Cas9 offers a potential cure rather than just symptom management.

Implementation

In a landmark clinical trial, researchers used CRISPR-Cas9 to edit the HBB gene in hematopoietic stem cells derived from patients with SCD. These edited cells were then reintroduced into the patients’ bodies. The results were astonishing:

  • Reduction in the frequency and severity of pain episodes
  • Improved hemoglobin levels
  • Enhanced quality of life

Impact

This breakthrough not only offers hope to millions suffering from SCD but also sets a precedent for using gene-editing technologies to treat other genetic disorders. The success of CRISPR-Cas9 in this context underscores the transformative potential of biotechnology in enhancing human health and longevity.

Case Study 2: Regenerative Medicine and Heart Disease

Background

Heart disease remains one of the leading causes of death globally. Traditional treatments, such as medication and surgery, often focus on managing symptoms rather than addressing the underlying damage to heart tissue.

The Breakthrough

Regenerative medicine, particularly the use of stem cells, has emerged as a promising approach to repairing damaged heart tissue. By harnessing the body’s natural healing processes, regenerative medicine aims to restore normal function to damaged organs.

Implementation

In a pioneering study, researchers used induced pluripotent stem cells (iPSCs) to generate cardiac cells. These cells were then injected into the damaged areas of patients’ hearts. The outcomes were remarkable:

  • Regeneration of healthy heart tissue
  • Improved cardiac function
  • Reduction in heart failure symptoms

Impact

This breakthrough in regenerative medicine offers a new lease on life for patients with heart disease. By focusing on tissue regeneration rather than symptom management, this approach has the potential to significantly extend longevity and improve quality of life.

Conclusion

Biotechnology is at the forefront of a revolution in human health. From gene editing to regenerative medicine, the breakthroughs in this field are not only enhancing our understanding of diseases but also providing innovative solutions to some of the most challenging health issues. As we continue to explore the potential of biotechnology, the future holds immense promise for enhancing human health and longevity.

By embracing these advancements and fostering a culture of innovation, we can look forward to a world where diseases are not just managed but cured, and where longevity is not just a dream but a reality.

SPECIAL BONUS: The very best change planners use a visual, collaborative approach to create their deliverables. A methodology and tools like those in Change Planning Toolkit™ can empower anyone to become great change planners themselves.

Image credit: Pixabay

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

The Ethical Implications of Genetic Engineering and Biotechnology Advancements

The Ethical Implications of Genetic Engineering and Biotechnology Advancements

GUEST POST from Art Inteligencia

Genetic engineering and biotechnology advancements have revolutionized various domains, including medicine, agriculture, and environmental conservation. These innovative breakthroughs have the potential to benefit humanity significantly. However, as technology advances, it raises ethical concerns regarding the responsible and sustainable use of these techniques. This thought leadership article explores the intricate ethical considerations associated with genetic engineering and biotechnology through two compelling case studies.

Case Study 1: CRISPR-Cas9 and Human Germline Editing

The development and widespread use of CRISPR-Cas9 gene-editing technology have opened up possibilities for targeted modifications in organisms’ genetic material, including humans. The prospect of efficiently and precisely editing human genomes brings forth a myriad of ethical concerns.

One of the most prominent concerns is the application of CRISPR-Cas9 in germline editing, altering the heritable genetic code of future generations. While this technology holds immense potential for treating genetic diseases and eradicating hereditary anomalies, it also raises questions of long-term consequences, consent, and potential unknown harm to individuals or gene pools.

For instance, the controversial case study of Chinese scientist Dr. He Jiankui who claimed to have genetically modified twin girls in 2018, to confer them with resistance to HIV, ignited a global uproar. This unauthorized experiment lacked the required consensus within the scientific community, bypassing ethical boundaries and violating regulations. It highlighted the need for strict ethical guidelines and international consensus to govern the use of germline editing, ensuring transparency, safety, and accountable research.

Case Study 2: Genetic Modification in Agricultural Crops

Biotechnology advancements have played a significant role in improving crop yields, enhancing nutritional value, and increasing resistance to pests and diseases. However, the application of genetically modified (GM) crops also raises ethical questions related to food security, environmental impact, and consumer rights.

An illustrative case study is the widespread cultivation of Bt cotton, genetically modified to produce the Bacillus thuringiensis (Bt) toxin. This toxin offers natural resistance against bollworms, drastically reducing the need for chemical pesticides. While Bt cotton has provided tremendous benefits to farmers in terms of increased yields and reduced environmental pollution, it has also led to concerns related to adverse effects on non-target organisms, resistance development in target pests, and monopolistic control of seed markets.

The ethical implications of these concerns revolve around striking a balance between sustainable agricultural practices, long-term environmental impacts, farmers’ livelihoods, and the rights of consumers to make informed choices about the food they consume.

Conclusion

Genetic engineering and biotechnology advancements have immense transformative potential, but they also bear significant ethical implications. The case studies of CRISPR-Cas9 germline editing and genetic modification in agriculture demonstrate the multifaceted nature of these ethical considerations.

To address the ethical challenges posed by these advancements, proactive measures must be taken, including the establishment of robust ethical frameworks, international guidelines, and meaningful stakeholder engagement. Such measures can help ensure transparency, accountability, equitable access to benefits, and a responsible approach to genetic engineering and biotechnology.

By navigating the ethical implications of genetic engineering and biotechnology with a thoughtful and balanced perspective, we can harness these innovations for the betterment of humanity while safeguarding the well-being of individuals, societies, and the environment.

Bottom line: Futurology is not fortune telling. Futurists use a scientific approach to create their deliverables, but a methodology and tools like those in FutureHacking™ can empower anyone to engage in futurology themselves.

Image credit: Unsplash

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.

Emerging Trends in Biotechnology: Revolutionizing Healthcare

Emerging Trends in Biotechnology: Revolutionizing Healthcare

GUEST POST from Art Inteligencia

Biotechnology has been a game-changer in the field of healthcare, driving innovation, and revolutionizing medical treatments. It involves the development and application of biological systems, organisms, or derivatives to create technological advancements that improve health and the quality of life. As our understanding of biotechnology advances, we are witnessing the emergence of several trends that have the potential to shape the future of healthcare. In this article, we will explore two case study examples highlighting these trends.

Case Study 1: Gene Editing with CRISPR-Cas9

One of the most significant breakthroughs in biotechnology is the development of CRISPR-Cas9, a revolutionary gene-editing technology. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a naturally occurring system found in bacteria that helps them defend against viruses. Scientists have harnessed this system to edit genes in various organisms, including humans.

This technology has shown immense promise in treating genetic diseases. In 2017, researchers at Oregon Health and Science University successfully used CRISPR-Cas9 to correct a disease-causing mutation in human embryos. This breakthrough opens up possibilities for preventing genetic diseases before birth. Additionally, CRISPR-Cas9 has the potential to treat various genetic disorders, such as sickle cell anemia and Huntington’s disease, by modifying disease-causing genes and restoring normal function.

The emergence of CRISPR-Cas9 has immense potential in revolutionizing healthcare by offering personalized and precise treatments for genetic diseases. However, it also raises ethical concerns, as it opens up possibilities for altering the human germline, potentially affecting future generations.

Case Study 2: Immunotherapy in Cancer Treatment

Immunotherapy is an innovative approach that harnesses the body’s immune system to fight cancer. This emerging trend in biotechnology has shown remarkable success in treating various types of cancer, improving patient outcomes, and extending survival rates.

One notable example is the development of immune checkpoint inhibitors that help activate the immune system’s response against cancer cells. Pembrolizumab, a checkpoint inhibitor, has shown remarkable effectiveness in treating advanced melanoma, a type of skin cancer. This drug allows the body’s immune cells to recognize and attack cancer cells, leading to improved patient responses and long-term survival.

Immunotherapy has also proven effective in treating other cancers, such as lung cancer, bladder cancer, and certain types of leukemia. It offers a promising alternative or complementary approach to traditional cancer treatments like chemotherapy and radiation therapy.

The emergence of immunotherapy represents a significant advancement in biotechnology, demonstrating the potential to transform cancer treatment and provide more effective and personalized therapies. However, challenges such as high costs, identifying appropriate patient selection criteria, and managing potential side effects still exist.

Conclusion

The emergence of new trends in biotechnology holds the promise of revolutionizing healthcare by offering groundbreaking treatments for diseases and improving patient outcomes. Gene editing with CRISPR-Cas9 and immunotherapy in cancer treatment are just two examples that showcase the potential impact of biotechnology in transforming healthcare.

While these advancements bring hope, ongoing research, ethical considerations, and regulatory frameworks are crucial to ensure the responsible and safe application of these technologies. However, it is undeniable that biotechnology has already started to reshape healthcare, making it a field to watch as we move towards a more advanced and personalized approach to medicine.

Bottom line: Futurists are not fortune tellers. They use a formal approach to achieve their outcomes, but a methodology and tools like those in FutureHacking™ can empower anyone to be their own futurist.

Image credit: Pixabay

Subscribe to Human-Centered Change & Innovation WeeklySign up here to get Human-Centered Change & Innovation Weekly delivered to your inbox every week.